-->

GoogleSearch



Scientist. Husband. Daddy. --- TOLLE. LEGE
외부자료의 인용에 있어 대한민국 저작권법(28조)과 U.S. Copyright Act (17 USC. §107)에 정의된 "저작권물의 공정한 이용원칙 | the U.S. fair use doctrine" 을 따릅니다. 저작권(© 최광민)이 명시된 모든 글과 번역문들에 대해 (1) 복제-배포, (2) 임의수정 및 자의적 본문 발췌, (3) 무단배포를 위한 화면캡처를 금하며, (4) 인용 시 URL 주소 만을 사용할 수 있습니다. [후원 | 운영] [대문으로] [방명록] [옛 방명록] [티스토리 (백업)]

이 블로그 검색

R: Rweka package

라벨:



[in fedora] R-java and R-java-devel


  • 1. Users who want an R install that comes with the Fedora OpenJDK preconfigured can yum install R-java.
  • 2. Developers who want an R development environment that has the Fedora OpenJDK preconfigured can yum install R-java-devel.
  • 3. It does not change the default behavior of the R-core, R-devel (and R) packages.
  • 4. Any addon R modules that require java to be present and configured can now use BuildRequires: R-java-devel and be built for Fedora in koji. 

[in R] 

  • install.packages(pkgs="RWeka") 
  • library(RWeka)


Documentation for package `RWeka' version 0.2-4

Help Pages

AdaBoostM1R/Weka Meta Learners
AprioriR/Weka Associators
BaggingR/Weka Meta Learners
CobwebR/Weka Clusterers
DBScanR/Weka Clusterers
DecisionStumpR/Weka Classifier Trees
FarthestFirstR/Weka Clusterers
fitted.Weka_classifierModel Predictions for R/Weka Classifiers
IBkR/Weka Lazy Learners
J48R/Weka Classifier Trees
JRipR/Weka Rule Learners
LBRR/Weka Lazy Learners
LinearRegressionR/Weka Classifier Functions
list_Weka_interfacesR/Weka interfaces
LMTR/Weka Classifier Trees
LogisticR/Weka Classifier Functions
LogitBoostR/Weka Meta Learners
M5PR/Weka Classifier Trees
M5RulesR/Weka Rule Learners
make_Weka_associatorR/Weka interfaces
make_Weka_classifierR/Weka interfaces
make_Weka_clustererR/Weka interfaces
MultiBoostABR/Weka Meta Learners
OneRR/Weka Rule Learners
PARTR/Weka Rule Learners
plot.Weka_treeR/Weka Classifier Trees
predict.Weka_classifierModel Predictions for R/Weka Classifiers
predict.Weka_clustererClass Predictions for R/Weka Clusterers
read.arffRead Data from ARFF Files
SimpleKMeansR/Weka Clusterers
SMOR/Weka Classifier Functions
StackingR/Weka Meta Learners
TertiusR/Weka Associators
WOWWeka Option Wizard
write.arffWrite Data into ARFF Files
write_to_dotCreate DOT Representations


    Test Data


    install.packages("caret", dependencies = TRUE)
    

    JRip


    library(caret)
    library(RWeka)
    data(iris)
    TrainData = iris[,1:4]
    TrainClasses = iris[,5]
    jripFit = train(TrainData, TrainClasses,method = "JRip")
    


    J48


    data(iris)
    m1 = J48(Species ~ ., data = iris)
    m1
    table(iris$Species, predict(m1))
    write_to_dot(m1)
    if(require("party", quietly = TRUE)) plot(m1)
    
    ## Using some Weka data sets ...
    
    ## J48
    DF2 = read.arff(system.file("arff", "contact-lenses.arff",
                                 package = "RWeka"))
    m2 = J48(`contact-lenses` ~ ., data = DF2)
    m2
    table(DF2$`contact-lenses`, predict(m2))
    if(require("party", quietly = TRUE)) plot(m2)
    
    ## M5P
    DF3 = read.arff(system.file("arff", "cpu.arff", package = "RWeka"))
    m3 = M5P(class ~ ., data = DF3)
    m3
    if(require("party", quietly = TRUE)) plot(m3)
    
    ## Logistic Model Tree.
    DF4 = read.arff(system.file("arff", "weather.arff", package = "RWeka"))
    m4 = LMT(play ~ ., data = DF4)
    m4
    table(DF4$play, predict(m4))
    
    ## Larger scale example.
    if(require("mlbench", quietly = TRUE)
       && require("party", quietly = TRUE)) {
        ## Predict diabetes status for Pima Indian women
        data("PimaIndiansDiabetes", package = "mlbench")
        ## Fit J48 tree with reduced error pruning
        m5 = J48(diabetes ~ ., data = PimaIndiansDiabetes, control = "-R")
        plot(m5)
        ## (Make sure that the plotting device is big enough for the tree.)
    }
    





    라벨:





    Scientist. Husband. Daddy. --- TOLLE. LEGE
    외부자료의 인용에 있어 대한민국 저작권법(28조)과 U.S. Copyright Act (17 USC. §107)에 정의된 "저작권물의 공정한 이용원칙 | the U.S. fair use doctrine" 을 따릅니다. 저작권(© 최광민)이 명시된 모든 글과 번역문들에 대해 (1) 복제-배포, (2) 임의수정 및 자의적 본문 발췌, (3) 무단배포를 위한 화면캡처를 금하며, (4) 인용 시 URL 주소 만을 사용할 수 있습니다. [후원 | 운영] [대문으로] [방명록] [옛 방명록] [티스토리 (백업)] [신시내티]

    -