블로그 내부검색
Tests: R, Perl
Labels:
Informatics
Email ThisBlogThis!Share to XShare to Facebook
- using chi-square test
- d-separation
T-test with Perl
#! /usr/bin/perl use Statistics::TTest; use Statistics::Basic qw(:all); my @Data1 = qw(1 2 3 4); my @Data2 = qw(11 12 13 11 16); my $mean = mean( @Data1 ) ; print $mean; my $ttest = new Statistics::TTest; $ttest->set_significance(95); $ttest->load_data(\@Data1,\@Data2); #$ttest->output_t_test(); my $t = $ttest->t_statistic; my $df = $ttest->df; my $prob = $ttest->{t_prob}; my $test = $ttest->null_hypothesis(); print "t=$t (df = $df) - p-value = $prob\nNull hypothesis is $test\n";
T-test with R (paired)
args <- commandArgs(TRUE) data1 <- args[1] # data file / numeric vector data2 <- args[2] # data file / numeric vector v1 <- read.table( file=data1, header=F ) v1 <- as.vector( v1 ) v2 <- read.table( file=data2, header=F ) v2 <- as.vector( v2 ) t.test( v1, v2, paired=F )
One-way ANOVA
http://www.math.mcmaster.ca/peter/s2ma3/s2ma3_0102/classnotes/notes20020328.html
Tuekey TEst
http://www.agr.kuleuven.ac.be/vakken/statisticsbyR/ANOVAbyRr/multiplecomp.htm
require(graphics) #summary(fm1 = aov(breaks ~ wool + tension, data = warpbreaks)) #TukeyHSD(fm1, "tension", ordered = TRUE) c2 = read.table(file="c2.txt", header=T) fm2 = aov( score ~ group, data=c2) TukeyHSD(fm2, "group", ordered = TRUE) plot(TukeyHSD(fm2, "group")) c4 = read.table(file="c4.txt", header=T) fm4 = aov( score ~ group, data=c4) TukeyHSD(fm4, "group", ordered = TRUE) plot(TukeyHSD(fm4, "group")) g1 g2 g3 g4 ------------------- 1 2 3 2 2 3 1 2 ------------------- g = read.csv( "g-ratio.csv", sep="\t" ) d = read.csv( "diameter.csv", sep="\t" ) g1 = as.vector( g[,1] ) g1 = g1[ g1 != "" ][-1] g2 = as.vector( g[,2] ) g2 = g2[ g2 != "" ][-1] g3 = as.vector( g[,3] ) g3 = g3[ g3 != "" ][-1] g4 = as.vector( g[,4] ) g4 = g4[ g4 != "" ][-1] group = c( rep("g1", length(g1)), rep("g2", length(g2)), rep("g3", length(g3)), rep("g4", length(g4)) ) score = as.numeric( c( g1, g2, g3, g4 ) ) t = data.frame( group ) t$score = score fm = aov( score ~ group, data=t) TukeyHSD(fm, "group", ordered = TRUE) plot(TukeyHSD(fm, "group"))
Email ThisBlogThis!Share to XShare to Facebook
Labels: Informatics
Scientist. Husband. Daddy. --- TOLLE. LEGE
외부자료의 인용에 있어 대한민국 저작권법(28조)과 U.S. Copyright Act (17 USC. §107)에 정의된 "저작권물의 공정한 이용원칙 | the U.S. fair use doctrine" 을 따릅니다. 저작권(© 최광민)이 명시된 모든 글과 번역문들에 대해 (1) 복제-배포, (2) 임의수정 및 자의적 본문 발췌, (3) 무단배포를 위한 화면캡처를 금하며, (4) 인용 시 URL 주소 만을 사용할 수 있습니다. [후원 | 운영] [대문으로] [방명록] [티스토리 (백업)] [신시내티]
